

Carbon Dioxide-Free Hydrogen and Solid Carbon from Natural Gas Via Metal Salt Intermediates (DE-AR0001019)

Jonah Erlebacher, Johns Hopkins University

Team Members: JHU (S. Vummidi, J. Horlyck, G. Greenidge); ETCH, INC (John Fini, P. Vimalchand); Southern Company (N.D. Meeks, E. Hogg, M. Nelson, T. Wu); Cabot Corporation (D. Matheu, T. Kodas)

Project Vision

Hydrogen, carbon, heat and water from natural gas: anywhere, profitably, efficiently, and without CO₂ emissions.

Total project cost:	\$4.1M
Length	48 mo.

The Team

commercialization

energy and power

The ETCH Process

Natural gas is input and decomposed:

1.
$$CH_4 + 2NiCl_2(g) \rightarrow 2Ni + C + 4HCl$$

$$\Delta H^o = -147 \text{ kJ/mol}_{CH_4}$$

2.
$$CH_4 \rightarrow C + 2H_2$$

 $\Delta H^\circ = 75 \text{ kJ/mol}_{CH_4}$

Nickel chloride regeneration:

3. Ni + 2HCl
$$\rightarrow$$
 NiCl₂(g)+H₂
 Δ H° = 111kJ/mol_{Ni}

Exciting Aspects of the ETCH Process

- High conversion efficiency
 - Much more favorable than pyrolysis alone
 - Overcomes "hot wall" problem
- Water-free chemistry
- Flexibility with respect to input power
 - natural gas (3 kgCO2/kgH2)
 - renewable electricity (zero CO2)
 - hydrogen (zero CO2)
- Modular and geographically locatable anywhere
- Low-cost hydrogen (potentially < \$1/kg)
- High purity carbon

The ETCH Process in Action

- Reactor is co-fed with CH4 and NiCl2
- ~100% methane decomposition over 36" hot zone (different conditions than video)
- Free flowing powder
- No sidewall deposition

January 18, 2022

An example showing reaction efficiency, and model fidelity: 95% conversion over 8 hours at 1 lpm methane, 36" long reactor, 3.8 cm ID

Conversion (left) and exit stream composition (right) versus time for 8-hour milestone run using 1.05 lpmCH4. Average conversion was 95% (dialed in), with no degradation in performance.

Expected mass and composition of Ni-C powder: 498 g (yield 468 g). Reaction model prediction: conversion (96%; actual 95%), H₂ (87%; actual 84%), CH₄ (2%; actual 2%), HCI (11%; actual 14%)

Carbon from the ETCH Process

- We have invented a method to recover metal from coked particles that is integrated into our process.
 Method is insensitive to the C:Ni ratio
- Sample carbons shows undetectable levels of metal by EDS; material is non-magnetic.
- Elemental analysis shows <100 ppm Ni
- Undetectable PCBs or chlorocarbon levels in as-made material
- We are producing >250 g/run
- TCLP test shows < 300 ppb of leachable Ni

January 18, 2022 JHU/ETCH/Southern/Cabot

Carbon Materials: TEM

before after

Carbon Materials: SEM

Carbon is homogeneous, mostly comprised of ~250 nm hollow spheres; undetectable metals by EDS

January 18, 2022 JHU/ETCH/Southern/Cabot

T₂M

Our goal is to commercialize the ETCH Process by:

- Enter partnership agreements with key industrial stakeholders
- Technology demonstration of the uniqueness and innovativeness of ETCH Process
- R&D of the ETCH Process to build pilot plant
- Build engineering staff to help design and build plants for customers

- Finalizing a \$6 million investment
- Working with partners for larger scale demonstration projects (100-1000 mt/yr)

